CSI: sns collaboration

(Coherent Scattering Investigations at the SNS)

- Collaboration formed
 - proto-collaboration meeting in June 2013
 - intent is to coordinate with other potential experiments (many overlaps)
 - detector possibilities for first phase: CoSI, Ge PPC, LXe TPC (can be / should be more than one)
- Neutron background measurement campaign ~Aug-Oct 2013+: are neutron bg conditions inside the building acceptable?
 - Sandia Neutron Scatter Cam currently at SNS
 - 18 scintillator detectors to be deployed (J. Newby)
 - Ge PPC + shielding from LBL (mid-Sept)
 - collaborating w/ SNS neutronics group
 - ESS collaborators plan measurements this fall
- Simulations (v flux & bg) joint working group being organized
- Letter from K. Beierschmitt to J. Siegrist

Possible sites inside the target building for CSI: SNS

Physics with SNS neutrinos

- The SNS is a uniquely high-quality source of neutrinos in the few tens of MeV range
- Rich potential physics program
- Interpretation of coherent scattering data requires best possible quenching factor characterization: good synergy with DM detection programs.

CENNS (Coherent Elastic Neutrino Nucleus Scattering) with low-energy recoil detectors (CSI:sns)	Standard Model test, non-standard interactions, supernova physics, sterile oscillations, neutron distributions,	1-2 years for first detection & physics, 3-5 years for next phase
Neutrino-nucleus cross- sections (e.g. CAPTAIN)	Supernova physics, supernova neutrino detection, Standard Model test,	~ 2 years
OscSNS	Sterile neutrino oscillations,	~5 years

Possible sites outside the target building

Small-scale excavation for CSISNS

OscSNS at ~ 60 m

Transparencies courtesy K. Scholberg and Y. Efremenko.

- Uncontroversial Standard Model process
- Large enhancement in cross-section for E₁, < few tens of MeV $(\sigma \propto \dot{N}^2$, possible only for neutral current)
- However, not yet measured... detector technology has been missing.

Detector mass must be at least ~1 kg (reactor experiment) + <u>recoil</u> energy threshold << 1keV

(low-E recoils lose only 10-20% to ionization or scintillation)

Cryogenic bolometers and other methods proposed, no successful implementation yet

> Cabrera, Krauss & Wilczek Phys. Rev. Lett. 55, 25-28 (1985) (prehistory of CDMS detectors)

qR<1

V (up to few tens of MeV) long wavelength "sees" all nucleons simultaneously $\sigma \propto N^2$ initial and final states are indistinguishable (coherence possible) recoil ~ few tens of eV

for targets of interest

Fundamental physics:

- Largest $\sigma_{\gamma_{i}}$ in SN dynamics: should be measured to validate models (J.R. Wilson, PRL 32 (74) 849)
- A large detector can measure total E and T of $SN v_u, v_\tau \Rightarrow$ determination of v oscillation pattern and mass of v star (J.F.Beacom, W.M.Far & P.Vogel, PRD 66(02)033011)
- Coherent σ same for all known v... oscillations observed in a coherent detector
- \Rightarrow evidence for v_{sterile} (A.Drukier & L.Stodolsky, PRD 30 (84) 2295)
- Sensitive probe of weak nuclear charge ⇒ test of radiative corrections due to new physics above weak scale (L.M.Krauss, PLB 269, 407)
- More sensitive to NSI and new neutral bosons than v factories. Also effective v charge ratio (J. Barranco et al., hep-ph/0508299,hep-ph-0512029
- σ critically depends on μ_{χ} : observation of SM prediction would increase sensitivity to μ_{x} , by > an order of magnitude (A.C.Dodd et al, PLB 266 (91) 434)
- Sensitive probe of n dens. distribution (Patton)

- Monitoring of nuclear reactors against illicit operation or fuel diversion: present proposals using conventional 1-ton detectors reach only > ~3 GWt reactor power
- Geological prospection, planetary tomography... the list gets much wilder.

- Uncontroversial Standard Model process
- Large enhancement in cross-section for E_V < few tens of MeV ($\sigma \propto N^2$, possible only for neutral current)
- However, not yet measured... detector technology has been missing.

Detector mass must be at least ~1 kg (reactor experiment) + <u>recoil</u> energy threshold << 1keV

(low-E recoils lose only 10-20% to ionization or scintillation)

 Cryogenic bolometers and other methods proposed, no successful implementation yet

Fundamental physics:

- Largest σ_V in SN dynamics: should be measured to validate models (J.R. Wilson, PRL 32 (74) 849)
- A large detector can measure total E and T of SN $\nu_{\mu}, \nu_{\tau} \Rightarrow$ determination of ν oscillation pattern and mass of ν star (J.F.Beacom, W.M.Far & P.Vogel, PRD $_{66(02)033011}$)
- Coherent σ same for all known v... oscillations observed in a coherent detector
- \Rightarrow evidence for v_{sterile} (A.Drukier & L.Stodolsky, PRD 30 (84) 2295)
- Sensitive probe of weak nuclear charge
 ⇒ test of radiative corrections due to new
 physics above weak scale (L.M.Krauss, PLB 269, 407)
- More sensitive to NSI and new neutral bosons than v factories. Also effective v charge ratio (J. Barranco et al., hep-ph/0508299,hep-ph-0512029
- \circ critically depends on μ_{V} : observation of SM prediction would increase sensitivity to μ_{V} by > an order of magnitude (A.C.Dodd *et al*, PLB 266 (91) 434)
- Sensitive probe of n dens. distribution (Patton)

- Monitoring of nuclear reactors against illicit operation or fuel diversion: present proposals using conventional
 1-ton detectors reach only > ~3 GWt reactor power
- Geological prospection, planetary tomography...
 the list gets much wilder.

- Uncontroversial Standard Model process
- Large enhancement in cross-section for E_V < few tens of MeV ($\sigma \propto N^2$, possible only for neutral current)
- However, not yet measured... detector technology has been missing.

Detector mass must be at least ~1 kg (reactor experiment) + <u>recoil</u> energy threshold << 1keV

(low-E recoils lose only 10-20% to ionization or scintillation)

Cryogenic bolometers and other methods

Fundamental physics:

- Largest σ_V in SN dynamics: should be measured to validate models (J.R. Wilson, PRL 32 (74) 849)
- A large detector can measure total E and T of SN $v_{\mu}, v_{\tau} \Rightarrow$ determination of v oscillation pattern and mass of v star (J.F.Beacom, W.M.Far & P.Vogel, PRD $_{66(02)033011}$)
- Coherent σ same for all known v... oscillations observed in a coherent detector
- \Rightarrow evidence for v_{sterile} (A.Drukier & L.Stodolsky, PRD 30 (84) 2295)
- Sensitive probe of weak nuclear charge
 ⇒ test of radiative corrections due to new
 physics above weak scale (L.M.Krauss, PLB 269, 407)
- More sensitive to NSI and new neutral bosons than v factories. Also effective v charge ratio (J. Barranco et al., hep-ph/0508299,hep-ph-0512029
- \circ critically depends on μ_{V} : observation of SM prediction would increase sensitivity to μ_{V} by > an order of magnitude (A.C.Dodd *et al*, PLB 266 (91) 434)
- Sensitive probe of n dens. distribution (Patton)

- Monitoring of nuclear reactors against illicit operation or fuel diversion: present proposals using conventional
 1-ton detectors reach only > ~3 GWt reactor power
- Geological prospection, planetary tomography... the list gets much wilder.

- Uncontroversial Standard Model process
- Large enhancement in cross-section for E_V < few tens of MeV ($\sigma \propto N^2$, possible only for neutral current)
- However, not yet measured... detector technology has been missing.

Detector mass must be at least ~1 kg (reactor experiment) + <u>recoil</u> energy threshold << 1keV

(low-E recoils lose only 10-20% to ionization or scintillation)

 Cryogenic bolometers and other methods proposed, no successful implementation yet

2005: Geoneutrinos detected.

Dawn of the applied neutrino physics era?

Applied Anti-Neutrino Physics Workshops

Fundamental physics:

- Largest σ_V in SN dynamics: should be measured to validate models (J.R. Wilson, PRL 32 (74) 849)
- A large detector can measure total E and T of SN $\nu_{\mu}, \nu_{\tau} \Rightarrow$ determination of ν oscillation pattern and mass of ν star (J.F.Beacom, W.M.Far & P.Vogel, PRD 66(02)033011)
- Coherent σ same for all known v... oscillations observed in a coherent detector
- \Rightarrow evidence for v_{sterile} (A.Drukier & L.Stodolsky, PRD 30 (84) 2295)
- Sensitive probe of weak nuclear charge
 ⇒ test of radiative corrections due to new
 physics above weak scale (L.M.Krauss, PLB 269, 407)
- More sensitive to NSI and new neutral bosons than ν factories. Also effective ν charge ratio (J. Barranco et al., hep-ph/0508299,hep-ph-0512029
- \circ critically depends on μ_{γ} : observation of SM prediction would increase sensitivity to μ_{γ} by > an order of magnitude (A.C.Dodd et al, PLB 266 (91) 434)
- Sensitive probe of n dens. distribution (Patton)

- Monitoring of nuclear reactors against illicit operation or fuel diversion: present proposals using conventional
 1-ton detectors reach only > ~3 GWt reactor power
- Geological prospection, planetary tomography...
 the list gets much wilder.

- Uncontroversial Standard Model process
- Large enhancement in cross-section for E_V < few tens of MeV ($\sigma \propto N^2$, possible only for neutral current)
- However, not yet measured... detector technology has been missing.

Detector mass must be at least ~1 kg (reactor experiment) + <u>recoil</u> energy threshold << 1keV

(low-E recoils lose only 10-20% to ionization or scintillation)

• Cryogenic bolometers and other methods proposed, no successful implementation yet

Fundamental physics:

- Largest σ_V in SN dynamics: should be measured to validate models (J.R. Wilson, PRL 32 (74) 849)
- A large detector can measure total E and T of SN $\nu_{\mu}, \nu_{\tau} \Rightarrow$ determination of ν oscillation pattern and mass of ν star (J.F.Beacom, W.M.Far & P.Vogel, PRD 66(02)033011)
- Coherent σ same for all known v... oscillations observed in a coherent detector
- \Rightarrow evidence for v_{sterile} (A.Drukier & L.Stodolsky, PRD 30 (84) 2295)
- Sensitive probe of weak nuclear charge
 ⇒ test of radiative corrections due to new
 physics above weak scale (L.M.Krauss, PLB 269, 407)
- More sensitive to NSI and new neutral bosons than v factories. Also effective v charge ratio (J. Barranco et al., hep-ph/0508299,hep-ph-0512029
- \circ critically depends on μ_{V} : observation of SM prediction would increase sensitivity to μ_{V} by > an order of magnitude (A.C.Dodd *et al*, PLB 266 (91) 434)
- Sensitive probe of n dens. distribution (Patton)

- Monitoring of nuclear reactors against illicit operation or fuel diversion: present proposals using conventional
 1-ton detectors reach only > ~3 GWt reactor power
- Geological prospection, planetary tomography...
 the list gets much wilder.

- Uncontroversial Standard Model process
- Large enhancement in cross-section for E_V < few tens of MeV ($\sigma \propto N^2$, possible only for neutral current)
- However, not yet measured... detector technology has been missing.

Detector mass must be at least ~1 kg (reactor experiment) + <u>recoil</u> energy threshold << 1keV

(low-E recoils lose only 10-20% to ionization or scintillation)

 Cryogenic bolometers and other methods proposed, no successful implementation yet

Fundamental physics:

- Largest σ_V in SN dynamics: should be measured to validate models (J.R. Wilson, PRL 32 (74) 849)
- A large detector can measure total E and T of SN $\nu_{\mu}, \nu_{\tau} \Rightarrow$ determination of ν oscillation pattern and mass of ν star (J.F.Beacom, W.M.Far & P.Vogel, PRD 66(02)033011)
- Coherent σ same for all known v... oscillations observed in a coherent detector
- \Rightarrow evidence for v_{sterile} (A.Drukier & L.Stodolsky, PRD 30 (84) 2295)
- Sensitive probe of weak nuclear charge
 ⇒ test of radiative corrections due to new
 physics above weak scale (L.M.Krauss, PLB 269, 407)
- More sensitive to NSI and new neutral bosons than v factories. Also effective v charge ratio (J. Barranco et al., hep-ph/0508299,hep-ph-0512029
- \circ critically depends on μ_{V} : observation of SM prediction would increase sensitivity to μ_{V} by > an order of magnitude (A.C.Dodd et al, PLB 266 (91) 434)
- Sensitive probe of n dens. distribution (Patton)

- Monitoring of nuclear reactors against illicit operation or fuel diversion: present proposals using conventional
 1-ton detectors reach only > ~3 GWt reactor power
- Geological prospection, planetary tomography...
 the list gets much wilder.

CoGeNT: neutrino & astroparticle physics using large-mass, ultra-low noise germanium detectors

New PPC HPGe

JCAP 09(2007)009

Applications:

- •Light Dark Matter
- •Coherent v detection
- • $\beta\beta$ decay (MAJORANA+GERDA)

One should always start with the foundations:

One should always start with the foundations: sub-keV recoil calibrations at the KSU TRIGA reactor

Ti post-filter "switches off" the recoils, leaving all backgrounds unaffected

Quenching factor measurement for recoils at discrete angles

 Measurements of ionization from nuclear recoils in Ge is in excellent agreement with the Lindhard theory prediction. SONGS-III deployment

SONGS-III deployment

Backgrounds well-understood ~30 m.w.e. equivalent "Clean" (outside of containment)

Fig. 2. Vertical muon intensity $I_{\perp}(h)$ [m⁻² s⁻¹ sr⁻¹] and the integral muon flux J(h) [m⁻² s⁻¹] vs. the <u>standard</u> rock overburden thickness h.

Backgrounds well-understood ~30 m.w.e. equivalent "Clean" (outside of containment)

Fig. 2. Vertical muon intensity $I_{\perp}(h)$ [m⁻² s⁻¹ sr⁻¹] and the integral muon flux J(h) [m⁻² s⁻¹] vs. the <u>standard rock overburden</u> thickness h.

SONGS-III deployment

Backgrounds well-understood ~30 m.w.e. equivalent "Clean" (outside of containment)

Fig. 2. Vertical muon intensity $I_{\perp}(h)$ [m⁻² s⁻¹ sr⁻¹] and the integral muon flux J(h) [m⁻² s⁻¹] vs. the standard rock overburden thickness h.

SONGS-III deployment

The bottom line: so close, and yet so far

- We met our background goals.
 Factor ~2 larger background than CDMS in Soudan, at just 30 m.w.e. This takes a triple active veto. This before we learned about surface event rejection.
- Demonstrated long-term stability (under duress), absence of RXassociated backgrounds.
- Need ~2 improvement in noise to see neutrinos. C-4 detectors may fit the bill.

Giorgio dixit: "first to put signal and backgrounds on a lin-lin plot..."

Starting new electronics & DAQ from scratch: a must to confirm a DM modulation, for all experiments.

Noise abatement not dissimilar to background reduction:

one layer of crap hides the next one (but noise terms add in quadrature!!!). FIG. 2: Left: Electronic noise contributions measured with a pulser, for a number of PPC detectors and their upgrades. The (flat) non-white component remained invariable up to the last attempt (BEGE-II, see text). Right: Top left, commercial FET package employing a sub-optimal boron nitride and PCB package, and a surface-mount feedback capacitor. The improved package on the right uses a vacuum feedback capacitor, PTFE as the single dielectric, and improved mounting of the heating resistor. This package features not only the best available measures against non-white electronic noise, but is also constructed out of radioclean materials. Bottom: schematic illustrating the origin and characteristics of several sources of electronic noise in detector systems, with "parallel-f" highlighted [12].

Taking sh

Redesigned PPC innards (PNNL/UC).

C-4 to feature lower detector capacitance (in x3 crystal mass), lower parallel-f noise, "smart" triggering (FPGA based). We expect a lower threshold, but seeing is believing.

Starting new electronics & DAQ from scratch: a must to confirm a DM modulation, for all experiments.

Making progress!

Half the best previous noise in latest C-4 Canberra prototypes (1.3 kg PPCs)

What next 6-

Q: Is using an spallation source any easier? (A: not really)

- Recoil energies are larger, but neutrino flux is 6 orders of magnitude lower.
- Pulsed signal allows to reduce background budget by ~4E-4. Background subtraction possible (anti-coincidence).
- Signal is pulsed, but so are the backgrounds (hard neutrons galore, ~1E-5/cm²s @20m).
 Time structure can be exploited to some extent to discriminate against neutron recoils.
 However, sufficient neutron shielding is the best solution.
- No significant overburden available. You get a lot of mileage out of those 30 m.w.e. in a reactor tendon gallery.

Using **measured** quenching factor

- Large N^2 => large x-section.
- Cs and I surround Xe in Periodic Table: they behave much like a single recoiling species, greatly simplifying understanding the NR response.
- Quenching factor in energy ROI sufficient for ~5 keVnr threshold (we have measured this).
- Statistical NR/ER discrimination is possible at low-E (will add to energy and time signatures of ν signal).
- Sufficiently low in intrinsic backgrounds (U, Th ,K-40, Rb-87, Cs-134,137: expect S/B~5 from ICP-MS and SNOLAB counting. Measurements in complete SNS shield and 6 m.w.e. in progress)
- Practical advantages: High light yield (64 ph/keVee), optimal match to bialkali PMTs, rugged, room temperature, inexpensive (\$1/g), modest afterglow (CsI[Tl] not a viable option for surface experiment).
- Expect ~800 v recoils/year in 15 kg detector under construction. Several times the rate/mass of LAr CLEAR.

- Large N^2 => large x-section.
- Cs and I surround Xe in Periodic Table: they behave much like a single recoiling species, greatly simplifying understanding the NR response.
- Quenching factor in energy ROI sufficient for ~5 keVnr threshold (we have measured this).
- Statistical NR/ER discrimination is possible at low-E (will add to energy and time signatures of v signal).
- Sufficiently low in intrinsic backgrounds (U, Th ,K-40, Rb-87, Cs-134,137: expect S/B~5 from ICP-MS and SNOLAB counting. Measurements in complete SNS shield and 6 m.w.e. in progress)
- Practical advantages: High light yield (64 ph/keVee), optimal match to bialkali PMTs, rugged, room temperature, inexpensive (\$1/g), modest afterglow (CsI[Tl] not a viable option for surface experiment).
- Expect $^{\sim}800~v$ recoils/year in 15 kg detector under construction. Several times the rate/mass of LAr CLEAR.

Simultaneous ER and NR low-E response measured

via Compton scattering and D-D neutron gun (see arXiv:1302.0796)

- Large N^2 => large x-section.
- Cs and I surround Xe in Periodic Table: they behave much like a single recoiling species, greatly simplifying understanding the NR response.
- Quenching factor in energy ROI sufficient for ~5 keVnr threshold (we have measured this).
- Statistical NR/ER discrimination is possible at low-E (will add to energy and time signatures of v signal).
- Sufficiently low in intrinsic backgrounds (U, Th ,K-40, Rb-87, Cs-134,137: expect S/B~5 from ICP-MS and SNOLAB counting. Measurements in complete SNS shield and 6 m.w.e. in progress)
- Practical advantages: High light yield (64 ph/keVee), optimal match to bialkali PMTs, rugged, room temperature, inexpensive (\$1/g), modest afterglow (CsI[Tl] not a viable option for surface experiment).
- Expect ~800 v recoils/year in 15 kg detector under construction. Several times the rate/mass of LAr CLEAR.

Simultaneous ER and NR low-E response measured

via Compton scattering and D-D neutron gun (see arXiv:1302.0796)

- Large N^2 => large x-section.
- Cs and I surround Xe in Periodic Table: they behave much like a single recoiling species, greatly simplifying understanding the NR response.
- Quenching factor in energy ROI sufficient for ~5 keVnr threshold (we have measured this).
- Statistical NR/ER discrimination is possible at low-E (will add to energy and time signatures of v signal).
- Sufficiently low in intrinsic backgrounds (U, Th ,K-40, Rb-87, Cs-134,137: expect S/B~5 from ICP-MS and SNOLAB counting. Measurements in complete SNS shield and 6 m.w.e. in progress)
- Practical advantages: High light yield (64 ph/keVee), optimal match to bialkali PMTs, rugged, room temperature, inexpensive (\$1/g), modest afterglow (CsI[Tl] not a viable option for surface experiment).
- Expect $^{\sim}800~v$ recoils/year in 15 kg detector under construction. Several times the rate/mass of LAr CLEAR.

time (ns)

60 ns may not look like

- Large N^2 => large x-section.
- Cs and I surround Xe in Periodic Table: they behave much like a single recoiling species, greatly simplifying understanding the NR response.
- Quenching factor in energy ROI sufficient for ~5 keVnr threshold (we have measured this).
- Statistical NR/ER discrimination is possible at low-E (will add to energy and time signatures of v signal).
- Sufficiently low in intrinsic backgrounds (U, Th ,K-40, Rb-87, Cs-134,137: expect S/B~5 from ICP-MS and SNOLAB counting. Measurements in complete SNS shield and 6 m.w.e. in progress)
- Practical advantages: High light yield (64 ph/keVee), optimal match to bialkali PMTs, rugged, room temperature, inexpensive (\$1/g), modest afterglow (CsI[Tl] not a viable option for surface experiment).
- Expect ~800 v recoils/year in 15 kg detector under construction. Several times the rate/mass of LAr CLEAR.

time (ns)

- Large N^2 => large x-section.
- Cs and I surround Xe in Periodic Table: they behave much like a single recoiling species, greatly simplifying understanding the NR response.
- Quenching factor in energy ROI sufficient for ~5 keVnr threshold (we have measured this).
- Statistical NR/ER discrimination is possible at low-E (will add to energy and time signatures of v signal).
- Sufficiently low in intrinsic backgrounds (U, Th ,K-40, Rb-87, Cs-134,137: expect S/B~5 from ICP-MS and SNOLAB counting. Measurements in complete SNS shield and 6 m.w.e. in progress)
- Practical advantages: High light yield (64 ph/keVee), optimal match to bialkali PMTs, rugged, room temperature, inexpensive (\$1/g), modest afterglow (CsI[Tl] not a viable option for surface experiment).
- Expect ~800 v recoils/year in 15 kg detector under construction. Several times the rate/mass of LAr CLEAR.

- Large N^2 => large x-section.
- Cs and I surround Xe in Periodic Table: they behave much like a single recoiling species, greatly simplifying understanding the NR response.
- Quenching factor in energy ROI sufficient for ~5 keVnr threshold (we have measured this).
- Statistical NR/ER discrimination is possible at low-E (will add to energy and time signatures of v signal).
- Sufficiently low in intrinsic backgrounds (U, Th ,K-40, Rb-87, Cs-134,137: expect S/B~5 from ICP-MS and SNOLAB counting. Measurements in complete SNS shield and 6 m.w.e. in progress)
- Practical advantages: High light yield (64 ph/keVee), optimal match to bialkali PMTs, rugged, room temperature, inexpensive (\$1/g), modest afterglow (CsI[Tl] not a viable option for surface experiment).
- Expect ~800 v recoils/year in 15 kg detector under construction. Several times the rate/mass of LAr CLEAR.

- Large N^2 => large x-section.
- Cs and I surround Xe in Periodic Table: they behave much like a single recoiling species, greatly simplifying understanding the NR response.
- Quenching factor in energy ROI sufficient for ~5 keVnr threshold (we have measured this).
- Statistical NR/ER discrimination is possible at low-E (will add to energy and time signatures of v signal).
- Sufficiently low in intrinsic backgrounds (U, Th ,K-40, Rb-87, Cs-134,137: expect S/B~5 from ICP-MS and SNOLAB counting. Measurements in complete SNS shield and 6 m.w.e. in progress)
- Practical advantages: High light yield (64 ph/keVee), optimal match to bialkali PMTs, rugged, room temperature, inexpensive (\$1/g), modest afterglow (CsI[Tl] not a viable option for surface experiment).
- Expect $^{\sim}800~v$ recoils/year in 15 kg detector under construction. Several times the rate/mass of LAr CLEAR.

- Large N² => large x-section.
- Cs and I surround Xe in Periodic Table: they behave much like a single recoiling species, greatly simplifying understanding the NR response.
- Quenching factor in energy ROI sufficient for ~5 keVnr threshold (we have measured this).
- Statistical NR/ER discrimination is possible at low-E (will add to energy and time signatures of v signal).
- Sufficiently low in intrinsic backgrounds (U, Th ,K-40, Rb-87, Cs-134,137: expect S/B~5 from ICP-MS and SNOLAB counting. Measurements in complete SNS shield and 6 m.w.e. in progress)
- Practical advantages: High light yield (64 ph/keVee), optimal match to bialkali PMTs, rugged, room temperature, inexpensive (\$1/g), modest afterglow (CsI[Tl] not a viable option for surface experiment).
- Expect ~800 v recoils/year in 15 kg detector under construction. Several times the rate/mass of LAr CLEAR.

The third leg in the stand: background

- VERY PRELIMINARY: we seem to be in an excellent situation (~15 ckkd @ 6 m.w.e. in neutrino recoil ROI before ~4E-4 timing reduction from SNS pulsed signal). Expect generous S/B, even before anticoincidence subtraction.
- Increase from 2kg -> 15kg will further improve bckg (Peak/Compton and external bckgs per mass). Simulation campaign in progress, to predict this from 2 kg prototype measurements.
- Prototype salts were gamma-counted at SNOLAB (U,Th < 1 ppb, K-40< 160ppb, Cs-137~25mBq/kg, Cs-134~70 mBq/kg) and analyzed via ICP-MS (Rb <3.5 ppb). Compares well with KIMS DM crystals (those are factor of a few better).
- Boule for 15kg detector is already grown, we are about to count (crystal) samples again prior to placing order.
- Plan to monitor SNS neutron backgrounds "in situ" through 57 keV and 81 keV gamma de-excitations from (n,n') in I-127 and Cs-133. Large crosssections, good efficiency with large crystal. We are in the process of calculating sensitivity.

 We want a solid proposal, one that <u>experimentally</u> demonstrates the threelegged stool (mass, threshold, background): if you build it, it will work. This is a must, given the present funding situation.

- After completion of bckg measurements at UC, move 2kg/15kg detector to SNS "neutrino room". Use of IBCs to provide inexpensive ~1m of moderator. Main purpose is to characterize neutron background and demonstrate readiness.
- Auger drilling (info from Y. Efremenko):
 contractor estimate \$83k for 60"
 diameter, 42' deep lined pit (but ~1/3
 the depth is plenty to block direct line of-sight neutrons). All other elements of
 detector/shield have been procured. We
 are presently measuring bckgs at 6
 m.w.e., i.e., similar conditions.
- 15kg detector in such a pit able to produce ~800 coh. v scatters / year above <u>demonstrated</u> 5 keVnr threshold. Enough for measurement of x-section and proof-of-principle.
- Extrapolation to x10 the mass required to deliver most physics of interest. Only slightly larger pit needed.

C'sI: what's the plan?

- We want a solid proposal, one that <u>experimentally</u> demonstrates the threelegged stool (mass, threshold, background): if you build it, it will work. This is a must, given the present funding situation.
- After completion of bckg measurements at UC, move 2kg/15kg detected to SNS "neutrino room". Use of IBCs to provide inexpensive "Im of moderator. Main purpose is to characterize neutron background and demonstrate readiness.
- Auger drilling (info from Y. Efremenko):
 contractor estimate \$83k for 60"
 diameter, 42' deep lined pit (but ~1/3
 the depth is plenty to block direct line of-sight neutrons). All other elements of
 detector/shield have been procured. We
 are presently measuring bckgs at 6
 m.w.e., i.e., similar conditions.
- 15kg detector in such a pit able to produce ~800 coh. v scatters / year above <u>demonstrated</u> 5 keVnr threshold. Enough for measurement of x-section and proof-of-principle.
- Extrapolation to x10 the mass required to deliver most physics of interest. Only slightly larger pit needed.

C'sI: what's the plan?

- We want a solid proposal, one that <u>experimentally</u> demonstrates the threelegged stool (mass, threshold, background): if you build it, it will work. This is a must, given the present funding situation.
- After completion of bckg measurements at UC, move 2kg/15kg detector to SNS "neutrino room". Use of IBCs to provide inexpensive ~1m of moderator. Main purpose is to characterize neutron background and demonstrate readiness.
- Auger drilling (info from Y. Efremenko):
 contractor estimate \$83k for 60"
 diameter, 42' deep lined pit (but ~1/3
 the depth is plenty to block direct line of-sight neutrons). All other elements of
 detector/shield have been procured. We
 are presently measuring bckgs at 6
 m.w.e., i.e., similar conditions.
- 15kg detector in such a pit able to produce ~800 coh. v scatters / year above <u>demonstrated</u> 5 keVnr threshold. Enough for measurement of x-section and proof-of-principle.
- Extrapolation to x10 the mass required to deliver most physics of interest. Only slightly larger pit needed.

C'SI: what's the plan?

- We want a solid proposal, one that <u>experimentally</u> demonstrates the threelegged stool (mass, threshold, background): if you build it, it will work. This is a must, given the present funding situation.
- After completion of bckg measurements at UC, move 2kg/15kg detector to SNS "neutrino room". Use of IBCs to provide inexpensive ~1m of moderator. Main purpose is to characterize neutron background and demonstrate readiness.
- Auger drilling (info from Y. Efremenko):
 contractor estimate \$83k for 60"
 diameter, 42' deep lined pit (but ~1/3
 the depth is plenty to block direct line of-sight neutrons). All other elements of
 detector/shield have been procured. We
 are presently measuring bckgs at 6
 m.w.e., i.e., similar conditions.
- 15kg detector in such a pit able to produce ~800 coh. v scatters / year above <u>demonstrated</u> 5 keVnr threshold. Enough for measurement of x-section and proof-of-principle.
- Extrapolation to x10 the mass required to deliver most physics of interest. Only slightly larger pit needed.

Coherent v-nucleus scattering...
closer than you think!